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Much of the effort spent in developing data assimilation methods for carbon dynamics

analysis has focused on estimating optimal values for either model parameters or state

variables. The main weakness of estimating parameter values alone (i.e., without consider

ing state variables) is that all errors from input, output, and model structure are attributed

to model parameter uncertainties. On the other hand, the accuracy of estimating state vari

ables may be lowered if the temporal evolution of parameter values is not incorporated

This research develops a smoothed ensemble Kalman filter (SEnKF) by combining ensemble

Kalman filter with kernel smoothing technique. SEnKF has following characteristics: (1) to

estimate simultaneously the model states and parameters through concatenating unknown

parameters and state variables into a joint state vector; (2) to mitigate dramatic, sudden

changes of parameter values in parameter sampling and parameter evolution process, and

control narrowing of parameter variance which results in filter divergence through adjust

ing smoothing factor in kernel smoothing algorithm; (3) to assimilate recursively data into

the model and thus detect possible time variation of parameters; and (4) to address properly

various sources of uncertainties stemming from input, output and parameter uncertainties

The SEnKF is tested by assimilating observed fluxes of carbon dioxide and environmenta

driving factor data from an AmeriFlux forest station located near Howland, Maine, USA

into a partition eddy flux model. Our analysis demonstrates that model parameters, such as

light use efficiency, respiration coefficients, minimum and optimum temperatures for pho

tosynthetic activity, and others, are highly constrained by eddy flux data at daily-to-seasona

time scales. The SEnKF stabilizes parameter values quickly regardless of the initial values o

the parameters. Potential ecosystem light use efficiency demonstrates a strong seasonality

Results show that the simultaneous parameter estimation procedure significantly improves

model predictions. Results also show that the SEnKF can dramatically reduce the variance

in state variables stemming from the uncertainty of parameters and driving variables. The
SEnKF is a robust and effective algorithm in evaluating and developing ecosystem mod-

els and in improving the understanding and quantification of carbon cycle parameters and

processes.
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1. Introduction

There are inherent limitations in the measurement and mod-
elling of ecosystem carbon dynamics. Measurements are
usually patchy in space and discontinuous in time, and
modelling of carbon dynamics is always built on a set of
principles coupled with assumptions and imperfectly defined
parameters. Advanced data assimilation techniques based on
statistics or optimization theory can mitigate these limitations
by combining a series of measurements with dynamic models.
To date, much of the effort spent in developing data assimi-
lation methods for carbon dynamics analysis has focused on
estimating optimal values for either model parameters (e.g.,
Braswell et al., 2005; Knorr and Kattge, 2005; Wang et al., 2006)
or state variables (Bond-Lamberty et al., 2005), but only rarely
both (Gove and Hollinger, 2006). Methods that focus on esti-
mating parameter values alone (i.e., without considering state
variables) generally attempt to minimize long-term prediction
error by using a historical batch of data that assumes time-
invariant parameters. The procedures used to process the
historical data as a whole lack the flexibility to investigate the
possibility that model parameters change over time. Although
there have been some attempts to partition data into a num-
ber of subsets in time order, such partitions are inevitably
subjective (Reichstein et al., 2005). Their main weakness is
that all errors from input, output, and model structure are
attributed solely to model parameter uncertainties. Sequential
data assimilation procedures such as the ensemble Kalman
filter (EnKF) have the potential to overcome this drawback
by explicitly taking all sources of uncertainty into account
(Evensen, 2003; Nichol et al., 2002). However, the successful
application of the EnKF focuses primarily on estimating time-
varying state variables under the typical presumption that
the parameters are to be specified in advance. For example,
Williams et al. (2005) successfully used the EnKF to improve
analysis of forest carbon dynamics in a young ponderosa pine
stand. Because the ecosystems are too complex to guaran-
tee that the model can thoroughly represent the state and
change of the system, it is incisive to diagnose the adequacy
of model structure and adjust the model through time vari-
ation of parameters together with state variables. Therefore
it is required to develop a novel sequential data assimilation
procedure that will provide simultaneous estimation of time-
varying model states and parameters.

Recently there have been a few of studies with encour-
aging results concerning ensemble-based state-parameter
estimation in atmospheric science and hydrology. Such as,
Anderson (2001) applied the EnKF to 40-parameter Lorenz
model to estimate simultaneously state variables and forc-
ing parameters (Lorenz, 1996). Annan et al. (2005) had further
investigated the applicability of the EnKF to an intermedi-
ate complexity general circulation model (GCM), in which
the initial-condition sensitivity of model behaviour was natu-
rally minimized by climatological response of the atmosphere.
Aksoy et al. (2006) used the EnKF to perform simultane-

ous state-parameter estimation of the sea-breeze model in
the presence of initial-condition error. In their studies, the
state-parameter estimation was to use EnKF on a joint vec-
tor concatenated uncertain parameters and state variables,
2 1 9 ( 2 0 0 8 ) 317–326

and coin covariance inflation to reduce the effect of fil-
ter divergence caused by narrowing of parameter variances
through repeated cycling of the EnKF. Moradkhani et al. (2005)
mentioned a dual state-parameter estimation of hydrological
models through combining the EnKF with kernel smooth-
ing technique. The kernel smoothing technique aimed to
overcome drawbacks of parameter sampling in conventional
model calibration methods through constructing artificial
parameter evolution at each time step by adding small ran-
dom perturbations (Todini et al., 1976). The drawback of such
parameter sampling is the over-dispersion of parameter sam-
ples and posterior distribution of parameters is possibly too
diffusive. The dual approach neglected effect of cross-state
and parameter dependencies. In addition, there was no dis-
cussion concerning filter divergence caused by narrowing
of parameter variance in Moradkni et al.’s study. Hence in
this study, we introduce a smoothed ensemble Kalman fil-
ter (SEnKF) to estimate simultaneously state variables and
parameters of a forest carbon flux partion model, Although
the SEnKF also combines the EnKF with kernel technique sim-
ilar to Moradkhani et al. (2005), the SEnKF is a joint approach
rather than dual one and addresses filter divergence issue in
similar way to Anderson and Anderson (1999).

In Section 2, we describe the methodology of the SEnKF
and builds up the mathematical formulation. Section 3 con-
tains a brief outline of a carbon flux partition model and flux
data at the AmeriFlux station in Howland, Maine, USA. The
simulation results are displayed and analysed in Section 4.
Discussion concerning state-parameter estimation is carried
out in Section 5, and some conclusions are presented in Sec-
tion 6.

2. SEnKF method

The SEnKF is a sequential data assimilation method with three
components: (1) a dynamic model used to forecast system
states as well as a parameter evolution process, (2) observa-
tion data and the relationship between the data and the model
states, and (3) an assimilation scheme for model–data synthe-
sis (Evensen and Van Leeuwen, 2000; Evensen, 2003; Raupach
et al., 2005).

2.1. Dynamic model

A dynamic model can be expressed as one or more discrete-
time nonlinear stochastic processes.

Xk+1 = f (Xk, Uk, �k) + εk (1)

where k denotes the time step, Xk is a vector of random state
variables or object variables (such as carbon flux or storage
attributes), f is the model operator as a propagation of model
state (such as rates of change of net carbon fluxes), Uk is a set
of externally specified time-dependent forcing variables (such
as meteorological variables and soil properties), �k is a set of

model parameters or auxiliary variables (such as light use effi-
ciency and partition ratios), and the noise term εk accounts for
both imperfections in model formulation and random vari-
ability in forcing variables and parameters.
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To extend the applicability of the EnKF to simultaneous
tate-parameter estimation, we need to build an evolution of
he parameters similar to that of the state variables:

k+1 = g(�k) + �k (2)

here g is a transition operator (such as a linear function,
(�k) = �k), and � is a random error term. We will discuss their
efinitions below. Now we define Yk = (Xk, �k)T, M = (f, g)T and
k = (εk, �k)T, where T denotes transposition. Then (1) and (2)
re changed into a standard state model:

k+1 = M(Yk, Uk) + qk (3)

.2. Observation data

he observation (Zk) is related to the system state, external
orcing variables, and parameters through an expression of
he form

k = H(Xk, Uk, �k) + ık (4)

or

k = H(Yk, Uk) + ık (5)

here the operator H specifies the deterministic relationship
etween the observation data and the model states. The noise
erm ık accounts for both measurement error (instrument and
rocessing errors in the measurements) and representation
rror (errors in the model representation of Z, introduced by
hortcomings in the observation model H), which is assumed
o be Gaussian and independent of model error.

.3. Assimilation scheme

he EnKF is based on the Monte Carlo method and the Kalman
lter formulation to mimic the probability distribution of the
odel state, conditioned on a series of observations of the
odel state. The probability density of the model state is rep-

esented by a large ensemble of model states, and these are
ntegrated forward in time by the model with a stochastic forc-
ng term representing the model errors (Evensen, 1994). Each
nsemble member evolves in time according to

k+1
j− = M(Yk

j+ , Uk
j ), j = 1, · · ·, N (6)

here N denotes the number of model state ensemble mem-
ers, Yk+1

j− is the component of the jth ensemble member

orecast at time k+1 and Yk
j+ is the jth updated ensemble

ember at time k. The noise term is not explicitly rep-
esented because the EnKF represents multiplicative model
rrors through forcing data perturbation (Evensen, 1997). The
orcing data perturbations are made by adding white noise

subject to Gaussian distribution with zero mean and covari-
nce Qk

j
) to forcing data at each time step:

k
j = Uk + �k

j , �k
j = N(0, Qk

j ) (7)
9 ( 2 0 0 8 ) 317–326 319

Now we discuss how to build an evolution of the parame-
ters similar to that of the state variables. The conventional
artificial parameter evolution, which adds a small random
perturbation at each time step, results in over-dispersion of
parameter samples and loss of continuity between two con-
secutive points in time. We used the kernel smoothing of
parameter samples to remedy the problem, as described in
West (1993):

�k+1
j− = a�k

j+ + (1 − a)�̄k+ + �k
j
,

�k
j

= N(0, h2Vk+),

�̄k+ = mean(�k
j+ ),

Vk+ = var(�k
j+ )

(8)

where �k+1
j− is the component of the jth ensemble member fore-

cast at time k+1, and �k
j+ is the component of the jth updated

ensemble member at time k, a is the shrinkage factor in (0,1)
of the kernel location, which is typically around 0.45–0.49, and
h is the smoothing factor. In the study, determination of the
smoothing factor is based on magnitude of ensemble variance
Vk+ of parameters. Of course, criteria to determine the magni-
tude are somewhat subjective and generally depend on the
background of the model. When Vk+ is quite large, h will be

defined as (1 − a2)
1/2

and serve as variance reduction. While Vk+
progressively decreases and eventually may cause filter diver-
gence, h (h > 1) needs to be chosen to inflate parameter spread.
In general, the only viable method choosing h is experimenta-
tion (i.e., trial and error) to give an assimilation with the most
favourable statistics (Anderson and Anderson, 1999; Annan et
al., 2005).

Similarly, observation data are treated as random variables
by generating an ensemble of observations from a distribution
with the mean equal to the measurement value and a covari-
ance equal to the estimated measurement error (Williams et
al., 2005).

Zk+1
j

= Zk+1 + ık+1
j

, ı = N(0, Rk+1) (9)

Because the true state is generally unknown, we calcu-
late a forecasted ensemble covariance matrix to substitute for
the definitions of the error covariance matrix in the Standard
Kalman filter.

Pk+1
− = 1

N−1 [Mk+1
Y − M̄K+1

Y ][Mk+1
Y − M̄k+1

Y ]
T

(10)

where Mk
Y = [Yk

1− − Ȳk
1− , · · ·, Yk

N− − Ȳk
N− ] and M̄k

Y = 1/N
∑N

j=1Yk
j− .

The updated scheme of the EnKF is as follows:

Yk+1
j+ = Yk+1

j− + Kk+1(Zk+1
j

− H(Yk+1
j− , Uk+1

j
)) (11)
where Kk+1 is Kalman gain.

Kk+1 = Pk+1
− HT(HPk+1

− HT + Rk+1)
−1

(12)
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3. Application of SEnKF to carbon (C)
modelling

3.1. Flux partition model

We use a flux partition model (Reichstein et al., 2005) as our
test dynamic model for the SEnKF method. Our selection is
based on two considerations. First, it is an important model
for constructing bottom-up estimates of continental carbon
balance components. Second, it is appropriate for testing the
robustness of the SEnKF method because it is nonlinear, there
are sufficient observations of state variables, and it has mul-
tiple unknown parameters. The flux partition model divides
net ecosystem exchange (NEE) into gross primary production
(GPP) and total ecosystem respiration (RESP) as follows:

NEEt = GPPt − RESPt

GPPt = LUEt PARt NDVIt Dtemp DVPD

RESPt = Rref,texp

[
E0

(
1

Tref,t − T0
− 1

Tair,t − T0

)] (13a–c)

where subscript t denotes time-dependent, LUEt is light
use efficiency, PARt is photosysnthetically active radiation,
NDVI is the normalized difference vegetation index, R is
t ref,t

respiration when air temperature (Tair,t) equals reference tem-
perature (Tref,t, usually specified as 10 ◦C), E0 is temperature
sensitivity, and T0 is a datum of temperature to avoid a denom-
inator of zero in the model (13c), kept constant at −46.02 ◦C as

Fig. 1 – Time series of GPP, RESP and NEE simulated by the SEnK
corresponding standard deviation around the mean of ensemble
2 1 9 ( 2 0 0 8 ) 317–326

in Reichstein et al. (2005). Dtemp determines the effect of tem-
perature on photosynthesis, and DVPD expresses the decrease
in leaf exchange from both photosynthesis and transpiration
caused by vapour pressure deficit (VPD), according to

Dtemp= max

[
(Tmax − Tair)(Tair − Tmin)

(Tmax − Tair)(Tair − Tmin) + (Topt − Tair)
2

, 0

]
(14)

DVPD = 0.5
[

1 + 1
1 + v0 exp(v1VPD)

]
(15)

where Tmin, Topt, and Tmax denote minimum, optimal, and
maximum temperatures for photosynthesis, respectively, VPD
is vapour pressure deficit, and v0 and v1 are two unknown
coefficients. If we define state and driving force vectors
as Yt = (NEEt, GPPt, RESPt, LUEt, Tmin, Topt, Tmax, �0, �1, Rref, E0)
and Ut=(Tt, PARt, VPDt, NDVIt), then the model can be
expressed in the form of (6).

3.2. Flux data

Eddy flux estimates of net ecosystem exchange (NEE) are based
on the covariance of high frequency fluctuations in vertical
wind velocity and CO2 concentration (Baldocchi et al., 1988).
We applied the SEnKF approach to data obtained at the Amer-

iFlux station in Howland, Maine, USA (Hollinger et al., 2004).
The period was from 2000 to 2004 because there were suffi-
cient hourly and daily data at the station for that time, and
because NDVI data from the Moderate Resolution Imaging

F and assimilated data. The grey vertical lines indicate the
s.
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pectroradiometer (MODIS) were not available until 2000. Field
bservations included hourly observations of NEE, humidity,
hotosynthetically active radiation (PAR), air temperature, air
ressure, wind speed, and daily precipitation data. In our anal-
sis, we used daily data of three state variables (NEE, GPP, and
ESP) and four driving force variables (air temperature, PAR,
PD, and NDVI). NEE data were directly downloaded from the
meriFlux Web station, in which NEE daily data were actually
composite of half-hour observations. RESP data were calcu-

ated from the temperature dependence curve of ecosystem
espiration derived from nighttime NEE observations (Yuan et
l., 2007). GPP data were pseudo-observations calculated as a
otal of NEE and RESP (13a). Gaps in carbon exchange data
ere filled using empirical regressions based on photosyn-

hetically active radiation (PAR), air and soil temperature. And

aps in environmental factor data (e.g., VPD) were also filled
sing empirical regressions based on air temperature, relative
umidity and saturation vapour pressure. The total percent-
ge of 30-min periods that required gap filling over 4-year data

ig. 2 – Comparison of simulation results by SEnKF (left panel) af
nd by CMA (right panel) to observations. Note that we only assi
odel and left 80% observation data as validation.
9 ( 2 0 0 8 ) 317–326 321

set was 15% for carbon exchange flux data and 12% for envi-
ronmental factor data. Daily NDVI was calculated using linear
interpolation of the MODIS 16-day composites. We assumed
that data errors were subject to a Gaussian distribution with a
zero mean and a variance of 20% of the average data based
on uncertainty analysis in eddy covariance measurements
(Hollinger and Richardson, 2005). The transition operator (H)
in (4) was taken as a 3 × N linear matrix with elements of 1 at
diagonal nodes and 0 at other nodes.

To test the predictive power of the SEnKF, we held 80% of the
data for model validation. Data assimilation was performed on
only 20% of the observations.

4. Results and analysis
For 2000 to 2003, the total assimilated GPP, RESP and NEE
were 4957 ± 21.7, 4142 ± 16.8, and −815 ± 22.3 g C m−2, respec-
tively. These compared well with observations for GPP, RESP,

ter assimilating 20% of observation data of state variables
milated 20% observation data of state variables into the
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and NEE of 5008 ± 50.1, 4187 ± 41.9, and −821 ± 24.6 g C m−2,
respectively. The estimate of NEE clearly indicates that the
system was acting as a C sink during this time period. The
maximum daily root-mean square error of the ensemble mean
of GPP, RESP and NEE were 0.27, 0.26, and 0.23 g C m−2 day−1,
respectively, which are small compared with their respective
maximum daily means. Data assimilation effectively captured
the temporal changes of GPP, RESP, and NEE over the 4 years
(Fig. 1).

We evaluated the performance of the SEnKF method, com-
paring results from the SEnKF with those generated by the
conventional modelling approach (CMA). The CMA had the
same flux partition model but a set of fixed optimal parameter
values was obtained using the conventional nonlinear inver-
sion procedures in the statistical analytical software (SAS).
However, this set of parameter values was derived from a
mixture of 15 AmeriFlux stations, covering various ecosystem

types (Yuan et al., 2007). Therefore, these parameter values
were not necessarily optimal for the Howland, Maine station
in this study. From Figs. 2 and 3, we can see that CMA pre-
dictions deviate from the observations at the Howland site,

Fig. 3 – The left panels show the forecasted values of three state
SEnKF against unassimilated data (80% of total observations). Th
model against the same unassimilated data.
2 1 9 ( 2 0 0 8 ) 317–326

caused at least partially caused by the use of time-invariant
parameter values. In this paper, we refer to the CMA model
as the base model. No further optimization of the parameter
values was performed specifically for Howland in order to see
whether or not the SEnKF could modify the bias of the model
stemming from parameter uncertainty.

Fig. 2 compares the results simulated by the SEnKF data
assimilation (left panel) and by the base model (right panel).
Only 20% of the observations were used during data assim-
ilation. The assimilated fluxes were very similar to the
observations as indicated by the closeness of the points along
the 1:1 line, whereas the flux estimates generated by the base
model contained systematic errors as indicated by the devia-
tion of triangles from the 1:1 line. Data assimilation accounted
for more than 98% of the variation in the observations of GPP,
REPS, and NEE, whereas the base model only explained for
81, 83, and 33% of the variation for GPP, RESP, and NEE, respec-

tively. All the linear regression equations between assimilated
and observed GPP, RESP, and NEE indicated no significant
bias (˛ < 0.05), whereas the base model generated strong
biases.

variables (GPP, RESP and NEE) of the model modified by the
e right panels display the simulation results by the base
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The next step was to test whether the new parameter val-
es derived from the SEnKF could be used to improve the
rediction of system conditions. The left panel of Fig. 3 com-
ares the model predictions (based on parameters derived
rom 20% of the observations using the SEnKF) with the obser-
ations that were held for validation (i.e., the 80% of the
bservations that the SEnKF did not see). The right panel of
ig. 3 compares the simulations generated by the base model
o the same 80% of the observations. Comparing three pairs of
orresponding linear fitting regression equations for GPP, RESP
nd NEE and their corresponding coefficients of determination
R2), we see that the estimates of the three flux variables using
he parameters (e.g., light use efficiency and reference respira-
ion) modified by the SEnKF had less bias against observations
han estimates using the base model (Fig. 3). This indicates
he SEnKF can extend the model parameter values generated
rom data assimilation to predictions when observations are
ot available. This capability could be valuable for filling data
aps caused by instrument failure.

Predictions made by SEnKF with data assimilation matched
bservations substantially better (Fig. 2) than predictions
ade without data assimilation (the left panel of Fig. 3). The

EnKF procedure becomes regular Monte Carlo analysis at
he time steps when no observation data are available for
ssimilation. The Monte Carlo analysis is based on Monte
arlo method and dynamic model under random perturba-

ion of inputs and/or parameters in the specified error ranges
o generate an ensemble of samples of state variables and
hen perform statistical analysis on the ensemble. At the
ata assimilation points (20% of the data), observation data
trongly constrained the three flux variables (Fig. 2), and the
ifferences between SEnKF model simulations and observa-
ions increased when no data were assimilated (left panels
f Fig. 3). This might mean that prior states of the model
ave a weak effect on subsequent states. It might also sug-
est that there were other controlling factors (e.g., nutrition
nd forest age) affecting these processes which were not
ncluded in the model, or that uncertainty existed in observa-
ions. Fig. 4 compares standard ensemble variances by SEnKF
ata assimilation against those by Monte Carlo analysis with-
ut data assimilation. The SEnKF can reduce up to 70% of
he variance of the ensemble without data assimilation. As
he magnitude of the variance of the ensemble increases,
he smoothing effect also increases. The variance mea-
ures the uncertainty stemming from parameters and driving
orces.

Because the SEnKF can assimilate sequential observa-
ion data into the model, the SEnKF also revealed that the
arameter values (e.g., light use efficiency and reference res-
iration) possessed strong seasonality or temporal variability

Fig. 5). This indicates that the base model has structural errors
manifested by nonoptimal parameter values in this study)
nd results in bias in prediction. The temporal change of
arameter values was relatively smooth because a smoothing
rocedure was implemented in the SEnKF to control the over-
ispersion of parameter sampling. In addition, the SEnKF can

uickly stabilize the parameter values regardless of the initial
alues of the parameters (Fig. 6). These demonstrate that the
EnKF can be used to perform recursive model calibration to
iagnose the adequacy of model structure.
model alone. The results show that the SEnKF can more
dramatically reduce variances of state variables than the
ensemble based only on Monte Carlo technique.

5. Comparison of state-parameter
estimation methods based on the nonlinear
filter

Here we only perform concept comparison of several nonlin-
ear filters and their applications to state-parameter estimation
rather than through numerical experiments.

5.1. Nonlinear filter

For nonlinear filtering problem expressed by (1), there has
existed a complete theoretical resolution based on Bayesian
principle (Anderson and Anderson, 1999). However, numerical

implementation of the solution is difficult or even intractable.
Hence there have developed many approaches to the problem,
such as, Extended Kalman Filter (EKF), Unscented Kalman Fil-
ter (UKF), Ensemble Kalman Filter (EnKF), Markov Chain Monte
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x pa
rd de
Fig. 5 – Temporal variations of two key parameters in the flu
respiration (Rref). The grey vertical lines indicate the standa

Carlo (MCMC), and their variants. The EKF requires perform-
ing a truncated first-order Taylor linearization on the system
equations about current state and then applying Kalman filter
to the linearization system. Although the EKF has been used

extensively, it suffers from possible divergence because of
linearization for strongly nonlinear filter problems (Evensen,
1994). Furthermore, the EKF need a huge memory to keep
covariance matrix in the integration forward process of state

Fig. 6 – Stabilization of parameters by the SEnKF. Note the differe
convergence.
rtition model: (a) light use efficiency (lue) and (b) reference
viation around the mean of ensembles.

variables. To address the shortcomings of the EKF, several new
filtering methods such as UKF, EnKF and their variants have
been introduced on the basis of Kalman filter. The common
points of the new methods all adopt sampling approaches

to conditional probability distribution rather than lineariza-
tion of the nonlinear system. The main idea behind the UKF
is to adopt a deterministic sampling of “sigma points” from
the prior joint density and subsequently apply the nonlinear

nce in the initial parameter values and the speedy
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ynamics to these sampled points to obtain forecast values,
nally update the forecast values through incorporating obser-
ations in the context of Kalman filter (Gove and Hollinger,
006). Whereas the mechanism of the EnKF is to adopt Monte
arlo technique on the nonlinear dynamics to generate an
nsemble of samples as a prior probability distribution and
hen incorporate the observations into the prior distribution
ccording to formulation of Kalman filter to get a posterior
robability distribution (Evensen, 1994, 2003). The UKF usually
equire that sample points are twice as many as dimension of
tate space. When the dimension of state space is very large,
he computational burden of the UKF will be heavy. However,

any data assimilations using EnKF have showed that the
nKF can well approximate the distribution with ensemble
ize being much less than dimension of state space (Aksoy
t al., 2006; Moradkhani et al., 2005). The EnKF belongs to one
ind of resampling Monte Carlo methods because its second
tep aims to update samples to generate by Monte Carlo in its
rst step. The art of MCMC is to set up a suitable Markov chain
ith a desired posterior distribution as stationary distribution

nd to judge when to stop simulation, i.e., to diagnose when
he chain has practically converged. Several popular MCMC
pproaches include Gibbs sampling, Metropolis-Hastings and
eversible jump (Arsham, 1998). The distinct advantage of
hese MCMC approaches is capable of representing probability
istribution with non-Gaussian behaviour and higher-order
oments of the distribution. However, their convergence

peed is still a challenging problem.

.2. Joint and dual estimation

ased on above nonlinear filters, there have been developed
wo principal approaches to simultaneously estimate state
ariables and parameters, namely joint and dual estimation.
he joint approach is first to argument the state vector with
arameters to form a joint state vector and then estimate the

oint vector using a single filter recursion. The dual approach is
o alternatively run two filters, one on the parameters in which
he state are treated as known, and the other on the state vec-
or in which the parameters are treated as known. The main
ifference between the two approaches, aside from the num-
er of filters required, is that the joint filter explicitly allows
or cross parameter and state dependencies. Whereas in the
ual filtering approach the cross covariance are not explic-

tly estimated, so that it effectively assumes that the cross
ariances equal zero. Hence it could be argued that if corre-
ation is suspected between states and parameters, the joint
pproach would be preferred (Gove and Hollinger, 2006). SEnKF
n this study is a joint state-parameter approach. Whereas the
tate-parameter estimation developed by Moradkhani et al.
2005) is a dual approach although both SEnKF and Morad-
hani’s method are based on ensemble Kalman filter with
ernel smoothing technique (West, 1993). The aim of applying
kernel-smoothing algorithm to an ensemble Kalman filter is

o overcome the dramatic, sudden change of parameter values
n time and the loss of information between two consecutive

oints in time. In addition, the kernel smoothing technique
an also control narrowing of parameter variance because
he narrowing usually results in filter divergence, through
djusting shrinking factor and smoothing factor in parameter
9 ( 2 0 0 8 ) 317–326 325

evolution (8). This is related to “conditional covariance infla-
tion” method devised by Aksoy et al. (2006) and “covariance
inflation” applied by Anderson (2001) and Annan et al. (2005).
Above numerical experiment demonstrated that SEnKF can
capture well time variability of parameters (Fig. 5) and quickly
stabilize effect of initial state of parameters (Fig. 6). Recently
several studies have also demonstrated the idea that carbon
flux model parameters vary with time. For example, Gove and
Hollinger (2006) used a dual unscented Kalman filter (UKF) to
assimilate eddy flux data into a simple C cycle model to fill
gaps in a flux record, estimating both parameters and states.
They also found that model parameters varied through the
season and ascribed that to deficiencies in their model.

6. Conclusions

The SEnKF method substantially and significantly improves
flux estimates of a flux partition model and dramatically
reduces uncertainties that stem from parameters and driving
forces. Simultaneous parameter estimation can use near real-
time observations to improve the predictive ability of dynamic
models. The model based on the SEnKF can be used to fill data
gaps in observations. This research demonstrates that the
SEnKF is a robust and effective algorithm for evaluating and
developing ecosystem models and improving understanding
and quantification of model parameters and carbon cycle pro-
cesses.
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